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Research

Staphylococcus aureus is a bacterial patho-
gen associated with a wide range of human 
infections, including skin infections, pneu-
monia, and septicemia (Bassetti et al. 2009). 
Infections with this microorganism can be 
difficult to treat because the strains are often 
resistant to one or more antibiotics, includ-
ing methicillin. Methicillin-resistant S. aureus 
(MRSA) was first isolated in 1960, and for the 
past four decades MRSA infections have been 
largely associated with hospital environments 
and referred to as hospital-acquired MRSA 
(HA-MRSA) (Bassetti et al. 2009; Gorwitz 
et al. 2008). However, in the late 1990s, com-
munity-acquired MRSA (CA-MRSA) infec-
tions began to appear in otherwise healthy 
people who had no known risk factors for 
these infections (Bassetti et al. 2009; Gorak 
et al. 1999). The incidence of CA-MRSA has 
continued to increase in the United States. 
Outbreaks of CA-MRSA have occurred 

among individuals sharing close contact with 
others in schools, prisons, and locker rooms, 
but other possible environmental reservoirs 
of MRSA have yet to be comprehensively 
explored (Diekema et al. 2001).

Identifying environmental reservoirs of 
MRSA in the community is critical if the 
spread of CA-MRSA infections is to be 
controlled. Of other potential environmental 
reservoirs, wastewater has been identified 
as a possible source of exposure to MRSA 
in the community (Börjesson et  al. 2009, 
2010; Plano et al. 2011). Colonized humans 
shed MRSA from the nose, feces, and skin; 
therefore, MRSA can end up in municipal 
wastewater streams (Börjesson et  al. 2009, 
2010; Plano et al. 2011; Wada et al. 2010). 
Börjesson et  al. (2009) recently detected 
MRSA resistance genes in all treatment 
steps at a Swedish municipal wastewater 
treatment plant (WWTP). These authors 

also cultured MRSA from influent samples 
(Börjesson et al. (2009), as well as influent 
and activated sludge samples (Börjesson et al. 
2010). Currently, as water shortages expand, 
treated municipal wastewater is increasingly 
used for applications including landscape 
and crop irrigation, groundwater recharge, 
and snowmaking (Levine and Asano 2004; 
Tonkovic and Jeffcoat 2002). During these 
activities, individuals applying, using, or 
coming in contact with reclaimed wastewater 
could potentially be exposed to MRSA and 
other bacteria that may remain in treated 
wastewater (Iwane et al. 2001).

To our knowledge, no studies have 
demonstrated the occurrence of MRSA in 
wastewater in the United States. In the present 
study, we evaluated the occurrence of MRSA 
and methicillin-susceptible S. aureus (MSSA) 
at four WWTPs located in two different 
regions of the United States: the Mid-Atlantic 
region and the Midwest. To further assess 
the MRSA strains, isolates were characterized 
by staphylococcal cassette chromosome mec 
(SCCmec) typing and pulsed field gel electro
phoresis (PFGE), and screened for Panton-
Valentine leucocidin (PVL), an exotoxin often 
associated with virulent strains of S. aureus.

Materials and Methods
Study sites. Four WWTPs were included in 
this study: two in the Mid-Atlantic region and 
two in the Midwest. The treatment steps and 
sampling locations at each of the treatment 
plants are illustrated in Figure 1.
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Background: The incidence of community-acquired methicillin-resistant Staphylococcus aureus 
(CA-MRSA) infections is increasing in the United States, and it is possible that municipal wastewater 
could be a reservoir of this microorganism. To date, no U.S. studies have evaluated the occurrence of 
MRSA in wastewater.

Objective: We examined the occurrence of MRSA and methicillin-susceptible S. aureus (MSSA) at 
U.S. wastewater treatment plants.

Methods: We collected wastewater samples from two Mid-Atlantic and two Midwest wastewater 
treatment plants between October 2009 and October 2010. Samples were analyzed for MRSA and 
MSSA using membrane filtration. Isolates were confirmed using biochemical tests and PCR (poly-
merase chain reaction). Antimicrobial susceptibility testing was performed by Sensititre® microbroth 
dilution. Staphylococcal cassette chromosome mec (SCCmec) typing, Panton-Valentine leucocidin 
(PVL) screening, and pulsed field gel electrophoresis (PFGE) were performed to further characterize 
the strains. Data were analyzed by two-sample proportion tests and analysis of variance.

Results: We detected MRSA (n = 240) and MSSA (n = 119) in 22 of 44 (50%) and 24 of 44 (55%) 
wastewater samples, respectively. The odds of samples being MRSA-positive decreased as treatment 
progressed: 10 of 12 (83%) influent samples were MRSA-positive, while only one of 12  (8%) 
effluent samples was MRSA-positive. Ninety-three percent and 29% of unique MRSA and MSSA 
isolates, respectively, were multidrug resistant. SCCmec types II and IV, the pvl gene, and USA 
types 100, 300, and 700 (PFGE strain types commonly found in the United States) were identified 
among the MRSA isolates.

Conclusions: Our findings raise potential public health concerns for wastewater treatment plant 
workers and individuals exposed to reclaimed wastewater. Because of increasing use of reclaimed 
wastewater, further study is needed to evaluate the risk of exposure to antibiotic-resistant bacteria in 
treated wastewater. 
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Mid-Atlantic WWTP1 (Figure 1A) is a 
tertiary WWTP in an urban area that processes 
681,390 m3/day of wastewater, with a peak 
capacity of 1.51 million m3/day. Mid-Atlantic 
WWTP2 (Figure  1B), a tertiary WWTP 
in a suburban area, processes 7,570 m3/day 
of wastewater and has a peak capacity of 
45,425 m3/day. Tertiary wastewater treatment 
includes primary treatment (physical removal 
of solids), secondary treatment (biological 
treatment), and additional treatment that can 
include, but is not limited to, chlorination, 

ultraviolet radiation, or filtration. The incom-
ing wastewater (influent) at both Mid-Atlantic 
plants includes domestic and hospital waste
water, and effluent (discharge) from both Mid-
Atlantic plants is piped to landscaping sites for 
reuse in spray irrigation. 

Midwest WWTP1 (Figure 1C) is a ter-
tiary WWTP in a rural area that processes 
1,363  m3/day of wastewater, with a peak 
capacity of 10,978 m3/day. The incoming 
water includes domestic wastewater and agri-
culturally influenced stormwater. Seasonal 

chlorination occurs in June, July, and August, 
and chlorinated effluent is piped to a land
scaping site for reuse in spray irrigation. 
Midwest WWTP2 (Figure 1D), a secondary 
WWTP (with no on-site disinfection) in a 
rural area, processes 1,439 m3/day and has 
a peak capacity of 7,571 m3/day. Secondary 
wastewater treatment includes only primary 
treatment (physical removal of solids) and sec-
ondary treatment (biological treatment). The 
incoming water at this plant includes domes-
tic wastewater, wastewater from a food pro-
duction facility, and agriculturally influenced 
stormwater. Unchlorinated effluent is piped to 
an agricultural site for crop irrigation.

Sample collection. A total of 44 grab sam-
ples were collected between October 2009 
and October 2010: 12 samples from Mid-
Atlantic WWTP1; 8  from Mid-Atlantic 
WWTP2; 12 from Midwest WWTP1; and 
12 from Midwest WWTP2. The timing of 
each sampling event was determined by the 
availability and schedule of the WWTP opera-
tors. The sampling time schedule and specific 
sampling locations for each plant are indicated 
in Tables 1 and 2 and Figure 1. Samples were 
collected in 1‑L sterile polyethylene Nalgene® 
Wide Mouth Environmental Sample Bottles 
(Nalgene, Lima, OH), labeled, and trans-
ported to the laboratory at 4°C. All samples 
were processed within 24 hr.

Isolation. Membrane filtration was used 
to recover S. aureus and MRSA from waste
water samples. Briefly, 300 mL of each sam-
ple were vacuum filtered through a 0.45‑µm, 
47‑mm mixed cellulose ester filter (Millipore, 
Billerica, MA). Filters were then enriched in 
40 mL of m Staphylococcus broth (Becton, 
Dickinson and Company, Franklin Lakes, NJ), 
vortexed, and incubated at 37°C for 24 hr. A 
10‑µL loopful of each enrichment was then 
plated in duplicate on MRSASelect (Bio-Rad 
Laboratories, Hercules, CA) and Baird Parker 
agar (Becton, Dickinson and Company) for 
the isolation of MRSA and total S. aureus, 
respectively. Plates were incubated at 37°C 
for 24 hr. Resulting black colonies with halos 
on Baird Parker agar and hot pink colonies 
on MRSASelect were considered presumptive 

Figure 1. Schematic of wastewater treatment processes at four wastewater treatment plants in the 
Mid-Atlantic and Midwest regions of the United States. For Mid-Atlantic WWTP1 (A) and Mid-Atlantic 
WWTP2 (B), 1 = influent, 2 = activated sludge reactor, 3 = post aeration, and 4 = effluent. (C) For Midwest 
WWTP1, 1 = influent, 2 = post aeration, 3 = secondary clarifier, and 4 = effluent. (D) For Midwest WWTP2, 
1 = influent, 2 = cell B, and 3 = effluent. 
aSeasonal chlorination takes place in June, July, and August. 
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Table 1. Distribution of MRSA-positive and ‑negative wastewater samples at all WWTPs by sampling event and sampling location.

Sampling location  
(total samples collected)

Mid-Atlantic WWTP1 
(n = 12)

Mid-Atlantic 
WWTP2 (n = 8) Midwest WWTP1 (n = 12) Midwest WWTP2 (n = 12)

Total positive 
samples (%)

Oct 
2009

Dec 
2009A

Dec 
2009B

Oct 
2010A

Oct 
2010B

Jul 
2010

Sep 
2010

Oct  
2010

Jul 
2010

Aug 
2010

Sep 
2010

Oct 
2010

Influent (n = 12) Pos Pos Pos Pos Pos Neg Pos Pos Pos Pos Neg Pos 10/12 (83)
Activated sludge reactor (n = 5) Pos Pos Pos Pos Pos — — — — — — — 5/5 (100)
Post aeration (n = 3) — — — — — Neg Pos Pos — — — — 2/3 (67)
Cell B (n = 4) — — — — — — — — Neg Neg Neg Neg 0/4 (0)
Secondary clarifier (n = 8) Neg Pos Pos Neg Neg Pos Neg Pos — — — — 4/8 (50)
Effluent (n = 12) Neg Neg Neg Neg Neg Neg Neg Posa Neg Neg Neg Neg 1/12 (8)
Total positive samples (%) 2/4 (50) 3/4 (75) 3/4 (75) 2/4 (50) 2/4 (50) 1/4 (25) 2/4 (50) 4/4 (100) 1/3 (33) 1/3 (33) 0/3 (0) 1/3 (33) 22/44 (50)

Abbreviations: Neg, negative sample; Pos, positive sample. Samples were collected twice during December 2009 at Mid‑Atlantic WWTP1 (A and B) and twice during October 2010 at 
Mid-Atlantic WWTP2 (A and B). 
aSample was collected when chlorination of effluent was not taking place.
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S. aureus and MRSA, respectively. These colo-
nies were purified on Brain Heart Infusion 
(BHI) agar (Becton, Dickinson and Company) 
and archived in Brucella broth (Becton, 
Dickinson and Company) with 15% glycerol 
at –80°C. For quality control and quality assur-
ance throughout the isolation process, S. aureus 
ATCC 43300 [American Type Culture 
Collection (ATCC), Manassas, VA] was used 
as a positive control and phosphate-buffered 
saline was used as a negative control. 

Identification. S. aureus and MRSA were 
confirmed using Gram stain, the coagulase test 
(Becton, Dickinson and Company), the cata-
lase test, and polymerase chain reaction (PCR). 
DNA extraction was carried out using the 
MoBio UltraClean® Microbial DNA Isolation 
Kit (Mo Bio Laboratories, Carlsbad, CA) fol-
lowing the manufacturer’s recommendations. 
For confirmation of S. aureus, we carried out 
PCR amplification of the S. aureus-specific nuc 
gene using NUC1 and NUC2 primers (Fang 
and Hedin 2003). For MRSA differentiation, 
we performed PCR amplification targeting 
the mecA gene, which encodes for methicillin 
resistance, using ECA1 and MECA2 primers, 
as previously described by Fang and Hedin 
(Brakstad et al. 1992; Fang and Hedin 2003; 
Smyth et al. 2001). The method was modified 
by including an internal control, using primers 
targeting the 16S rDNA genes, in a multiplex 
PCR assay (Edwards et al. 1989). PCR amplifi-
cation consisted of an initial denaturing step of 
95°C for 3 min, followed by 34 cycles of dena-
turing at 94°C for 30 sec, annealing at 55°C for 
30 sec, and extension at 72°C for 30 sec, with a 
final extension at 72°C for 5 min.

Antimicrobial susceptibility testing. We 
performed antimicrobial susceptibility testing 
on all PCR-confirmed MRSA (n = 240) and 
MSSA (n = 119) isolates using the Sensititre® 
microbroth dilution system (Trek Diagnostic 
Systems Inc., Cleveland, OH) in accordance 
with the manufacturer’s instructions. 
Overnight cultures were transferred to sterile 
demineralized water (Trek Diagnostic Systems) 
to achieve a 0.5 McFarland standard. Then, 
30 µL of each suspension was transferred to 
sterile cation-adjusted Mueller Hinton broth 

(Trek Diagnostic Systems) and 50  µL of 
the broth solution was then dispensed into 
GPN3F minimal inhibitory concentration 
(MIC) plates (Trek Diagnostic Systems Inc.) 
with the following antibiotics: erythromycin 
(ERY; 0.25–4 µg/mL), clindamycin (CLI; 
0.12–2  µg/mL), quinupristin/dalfopristin 
(SYN; 0.12–4 µg/mL), daptomycin (DAP; 
0.25–8 µg/mL), vancomycin (VAN; 1–128 
µg/mL), tetracycline (TET; 2–16 µg/mL),  
ampicillin (AMP; 0.12–16 µg/mL), gentamicin 
(GEN; 2–16, 500  µg/mL), levofloxacin 
(LEVO; 0.25–8  µg/mL), linezolid (LZD; 
0.5–8  µg/mL), ceftriaxone (AXO; 8–64  
µg/mL), streptomycin (STR; 1,000 µg/mL), 
penicillin (PEN; 0.06–8 µg/mL), rifampin 
(RIF; 0.5–4  µg/mL), gatifloxacin (GAT; 
1–8 µg/mL), ciprofloxacin (CIP; 0.5–2 µg/mL),  
trimethoprim/sulfamethoxazole (SXT; 1/19–
4/76 µg/mL), and oxacillin+2%NaCl (OXA+; 
0.25–8 µg/mL). Enterococcus faecalis ATCC 
29212 and S. aureus ATCC 29213 strains 
were used for quality control. MICs were 
recorded as the lowest concentration of an anti
microbial that completely inhibited bacterial 
growth [Clinical and Laboratory Standards 
Institute (CLSI) 2010]. Resistance break points 
published by the CLSI were used (CLSI 2010). 
Multidrug resistance (MDR) was defined as 
resistance to two or more classes of antibiotics.

SCCmec typing. We used a multiplex PCR 
assay developed by Milheiriço et al. (2007) to 
characterize the MRSA isolates (n = 240) by 
SCCmec type (Milheiriço et al. 2007; Oliveira 
and de Lencastre 2002). SCCmec strains COL 
(type I), BK2464 (type II), ANS46 (type III), 
MW2 (type IVa), HAR22 (type IVh), and 
HDE288 (type  VI) were used as positive 
controls for SCCmec typing.

PVL screening. All MRSA isolates, con-
firmed by possession of the nuc and mecA 
genes by PCR and an identifiable SCCmec 
type (n = 236), were screened for PVL by PCR 
of the pvl gene according to Strommenger 
et al. (2008). S. aureus ATCC strain 25923 
was used as a positive control.

PFGE. We performed PFGE on a subset 
of 22 MRSA isolates. To ensure a diverse, rep-
resentative subset, isolates were selected using 

the following criteria: treatment plant, sam-
pling date, SCCmec type, and each sampling 
location that had a positive sample. PFGE was 
based on the Centers for Disease Control and 
Prevention (CDC) Laboratory Protocol for 
Molecular Typing of S. aureus by PFGE (CDC 
2011). We used SmaI (Promega, Madison, 
WI) to digest genomic DNA. Digested sam-
ples were run in 1% SeaKem® Gold agarose 
gels (Cambrex Bio Science Rockland Inc., 
Rockland, ME) in 0.5X TBE (tris-borate- 
EDTA) using a CHEF Mapper (Bio-Rad) for 
18.5–19 hr at 200 V, 14°C, and initial and 
final switch of 5 and 40 sec. Cluster analy-
sis was performed using BioNumerics soft-
ware v5.10 (Applied Maths Scientific Software 
Development, Saint-Martens-Latem, Belgium) 
using Dice coefficient and the unweighted 
pair-group method. Optimization settings for 
dendrograms were 1.0% with a position toler-
ance of 0.95%. Based on the similarity of the 
control strains, isolates were considered clones 
if similarity was ≥ 88%. Salmonella serotype 
Braenderup strain H9812 was used as the 
standard. PFGE strain types were compared 
with USA types (100, 200, 300, 400, 500, 
600, 700, 800, 1000, and 1100).

Statistical analyses. Descriptive statistics 
include the percentages of wastewater sam-
ples positive for MRSA (Table 1) and MSSA 
(Table 2) by WWTP. Because PFGE was 
not performed on all isolates, statistical analy-
ses of antibiotic resistance data were limited 
to MRSA (n = 84) and MSSA (n = 58) iso-
lates expressing unique phenotypic profiles; 
this allowed us to reduce bias that could be 
introduced by including clones. Two-sample 
tests of proportions were performed between 
MRSA and MSSA isolates with respect to the 
percent resistance of each group of isolates to 
each of the 18 tested antibiotics. Analysis of 
variance was then used to compare the average 
numbers of antibiotics against which MRSA 
and MSSA isolates were resistant. In all cases, 
p-values ≤ 0.05 were defined as statistically sig-
nificant. All statistical analyses were performed 
using Stata/IC 10 (StataCorp LP, College 
Station, TX) and SAS 9.2 (SAS Institute Inc., 
Cary, NC).

Table 2. Distribution of MSSA-positive and ‑negative wastewater samples at all WWTPs by sampling event and sampling location.

Sampling location  
(total samples collected)

Mid-Atlantic WWTP1 
(n = 12)

Mid-Atlantic 
WWTP2 (n = 8) Midwest WWTP1 (n = 12) Midwest WWTP2 (n = 12)

Total positive 
samples (%)

Oct 
2009

Dec 
2009A

Dec 
2009B

Oct 
2010A

Oct 
2010B

Jul 
2010

Sep 
2010

Oct 
2010

Jul 
2010

Aug 
2010

Sep 
2010

Oct 
2010

Influent (n = 12) Pos Pos Pos Pos Pos Pos Neg Pos Pos Pos Neg Pos 10/12 (83)
Activated sludge reactor (n = 5) Pos Pos Pos Pos Pos — — — — — — — 5/5 (100)
Post aeration (n = 3) — — — — — Pos Pos Pos — — — — 3/3 (100)
Cell B (n = 4) — — — — — — — — Pos Neg Neg Neg 1/4 (25)
Secondary clarifier (n = 8) Neg Pos Pos Neg Neg Pos Neg Pos — — — — 4/8 (50)
Effluent (n = 12) Neg Neg Neg Neg Neg Neg Posa Posa Neg Neg Neg Neg 2/12 (17)
Total positive samples (%) 2/4 (50) 3/4 (75) 3/4 (75) 2/4 (50) 2/4 (50) 3/4 (75) 2/4 (50) 4/4 (100) 2/3 (67) 1/3 (33) 0/3 (0) 1/3 (33) 24/44 (55)

Abbreviations: Neg, negative sample; Pos, positive sample. Samples were collected twice during December 2009 at Mid‑Atlantic WWTP1 (A and B) and twice during October 2010 at 
Mid-Atlantic WWTP2 (A and B). 
aSamples were collected when seasonal chlorination was not taking place.
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Results
Occurrence of MRSA. We detected MRSA 
at all WWTPs in this study. The distribu-
tion of MRSA-positive samples differed by 
WWTP, sampling date, and sampling loca-
tion (Table 1). Across all treatment plants 
sampled, 50% (22/44) of wastewater samples 
were positive for MRSA: 60% (12/20) of sam-
ples from Mid-Atlantic WWTPs, and 42% 
(10/24) of samples from Midwest WWTPs. 
Eighty-three percent (10/12) of influent sam-
ples from all WWTPs were MRSA-positive; 
100% (5/5) from Mid-Atlantic WWTPs and 
71% (5/7) from Midwest WWTPs. MRSA 
was not detected in any tertiary-treated (chlo-
rinated) effluent samples (Table 1). However, 
MRSA was detected in one effluent sample 
from Midwest WWTP1 in October 2010 
when chlorination was not taking place. 
Overall, Midwest WWTP2 had the lowest 
percentage of MRSA-positive wastewater sam-
ples, with MSRA detected only in the influent 
(Table 1). This plant is the only WWTP in 
the present study that does not use an acti-
vated sludge reactor step; instead, it uses a 
system of lagoons for biological treatment.

Occurrence of MSSA. MSSA was also 
detected at all WWTPs in this study. The 

distribution of MSSA-positive samples differed 
by WWTP, sampling date, and sampling loca-
tion (Table 2). Across all treatment plants sam-
pled, 55% (24/44) of wastewater samples were 
positive for MSSA: 60% (12/20) of samples 
from Mid-Atlantic WWTPs and 50% (12/24) 
of samples from Midwest WWTPs. Eighty-
three percent (10/12) of influent samples from 
all WWTPs were MSSA-positive; 100% from 
Mid-Atlantic WWTPs and 71% from Midwest 
WWTPs. MSSA was not detected in tertiary-
treated (chlorinated) effluent samples (Table 2). 
However, MSSA was detected in two effluent 
samples from Midwest WWTP1 in September 
and October 2010 when chlorination was not 
taking place. Of all four WWTPs, Midwest 
WWTP2 had the lowest percentage of MSSA-
positive wastewater samples, and MSSA was 
detected only in the influent.

Antibiotic resistance patterns. In total, 
240 MRSA isolates were isolated from all 
of the WWTPs. However, because PFGE 
was not performed on all isolates, the sta-
tistical analyses concerning antibiotic resis-
tance patterns among these isolates were 
limited to those that could be confirmed as 
unique (n = 84) using phenotypic analyses. 
The unique MRSA isolates had a median 

OXA+ MIC of ≥  16  µg/mL (range, 4 to 
≥ 16 µg/mL) and expressed resistance to sev-
eral antibiotics approved by the U.S. Food 
and Drug Administration for treating MRSA 
infections, including TET, CIP, LEVO, 
GAT, and CLI, as well as LZD and DAP 
(Figure 2), which are important alternatives 
to older antibiotics for treating severe MRSA 
infections (Johnson and Decker 2008).

Antimicrobial resistance patterns among 
unique MRSA isolates varied by WWTP 
and sampling location (Figure 2). In gen-
eral, at both Mid-Atlantic WWTPs and at 
Midwest WWTP1, the percentage of isolates 
resistant to individual antibiotics increased 
or stayed the same as treatment progressed 
(Figure 2A–2C). At Midwest WWTP2, only 
influent samples were positive for MRSA, and 
the majority of these isolates were resistant to 
most of the tested antibiotics (Figure 2D).

In total, 119 MSSA isolates were isolated 
from all WWTPs. Similar to our statistical 
analyses of MRSA isolates, our analyses of 
antimicrobial resistance patterns among MSSA 
isolates were limited to those isolates that 
could be confirmed as unique (n = 58) using 
phenotypic analyses. Antimicrobial resistance 
patterns among unique MSSA isolates also 
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Figure 2. Resistance to antimicrobial agents detected among MRSA isolates at (A) Mid-Atlantic WWTP1, (B) Mid-Atlantic WWTP2, (C) Midwest WWTP1, and 
(D) Midwest WWTP2. The process for each plant is shown in Figure 1. 
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varied by WWTP (Figure 3). The percentages 
of ERY-, AMP- and PEN-resistant unique 
MSSA isolates at Mid-Atlantic WWTP1 
increased as treatment progressed, whereas 
the percentages of isolates resistant to the 
fluoroquinolones (LEVO, CIP, and GAT) 
decreased from influent to activated sludge 
reactor samples (Figure 3A). At Mid-Atlantic 
WWTP2, the percentages of ERY-, AMP-, 
PEN-, and GAT-resistant MSSA isolates 
increased from influent to activated sludge 
reactor samples (Figure 3B). Similarly, among 
Midwest WWTP1 and Midwest WWTP2 
MSSA, resistance to AMP and PEN increased 
as treatment progressed (Figure 3C,D). 

In terms of resistance among the groups of 
isolates, a greater percentage of MRSA isolates 
than MSSA isolates were resistant to the fol-
lowing 14 antibiotics: ERY, CLI, STR, SYN, 
DAP, TET, AMP, RIF, LEVO, PEN, CIP, 
AXO, GAT, and OXA+ (Table 3). MRSA 
isolates were resistant to more antimicrobials 
(on average 6.94) than were MSSA isolates 
(on average 2.26) (p < 0.001).

Multidrug resistance. Of phenotypically 
unique MRSA isolates from all WWTPs, 93% 
(78/84) were MDR, whereas 29% (17/58) of 
unique MSSA isolates from all WWTPs were 

MDR. The summary of MDR MRSA and 
MSSA by sampling location (across all plants) 
is shown in Figure 4.

SCCmec typing. SCCmec types II and IV 
were identified among the MRSA iso-
lates (Table 4). Overall, 83% (199/240) of 

the MRSA isolates were type  IV and 15% 
(37/240) were type II. For all WWTPs, except 
Mid-Atlantic WWTP1, only one SCCmec 
type was identified at each plant (Table 4). 
Four isolates (2%) displayed resistance to 
OXA+ in antimicrobial susceptibility testing, 
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Figure 3. Resistance to antimicrobial agents detected among MSSA isolates at (A) Mid-Atlantic WWTP1, (B) Mid-Atlantic WWTP2, (C) Midwest WWTP1, and 
(D) Midwest WWTP2. The process for each plant is shown in Figure 1. 

Table 3. Percentage of MRSA and MSSA isolates resistant to each tested antibiotic, compared using 
two-sample tests of proportions. 

Percentage of resistant isolates p-Value 
(one-sided)Antibiotic MRSA MSSA

ERY (erythromycin) 82.14 (69/84) 28.57 (16/56) < 0.0001
CLI (clindamycin) 27.38 (23/84) 1.72 (1/58) < 0.0001
GEN (gentamicin) 10.84 (9/83) 3.45 (2/58) 0.0537
STR (streptomycin) 4.76 (4/84) 0 (0/58) 0.0459
SYN (quinupristin/dalfopristin) 7.14 (6/84) 0 (0/58) 0.0188
DAP (daptomycin) 16.67 (14/84) 0 (0/58) 0.0005
VAN (vancomycin) 0 (0/83) 0 (0/57) —
TET (tetracycline) 14.29 (12/84) 0 (0/58) 0.0013
AMP (ampicillin) 98.81 (83/84) 68.97 (40/58) < 0.0001
RIF (rifampicin) 9.76 (8/82) 0 (0/58) 0.0071
LEVO (levofloxacin) 63.41 (52/82) 15.79 (9/57) < 0.0001
LZD (linezolid) 5.95 (5/84) 3.45 (2/58) 0.2494
PEN (penicillin) 98.81 (83/84) 73.21 (41/56) < 0.0001
CIP (ciprofloxacin) 63.10 (53/84) 15.79 (9/57) < 0.0001
SXT (trimethoprim/sulfamethoxazole) 2.38 (2/84) 0 (0/58)  0.1184
AXO (ceftriaxone) 30.49 (25/82) 0 (0/58) < 0.0001
GAT (gatifloxacin) 62.65 (52/83) 18.97 (11/58) < 0.0001
OXA+ (oxacillin+2%NaCl) 98.81 (83/84) 0 (0/58) < 0.0001
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but did not have the mecA band in the Fang 
and Hedin PCR multiplex or the mecA band 
in the SCCmec PCR multiplex.

PVL screening. Among our total MRSA 
isolates where SCCmec type could be con-
firmed, 68% (161/236) were positive for the 
pvl gene: 72% at Mid-Atlantic WWTP1, 75% 
at Mid-Atlantic WWTP2, 83% at Midwest 
WWTP1, and 0% at Midwest WWTP2 
(Table 4).

PFGE. Clusters based on > 88% similarity 
resulted in 12 unique types among our sub-
set of 22 isolates, suggesting a heterogeneous 
population among MRSA from U.S. WWTPs 
(Figure 5). Three different USA types, 100, 
300, and 700, were identified. Nine isolates 
did not match any of the USA types.

Discussion
MRSA and MSSA occurrence in U.S. waste­
water. Although MRSA has been identified 
in WWTPs in Sweden (Börjesson et al. 2009, 
2010), to our knowledge, this is the first 
report of the detection of MRSA at municipal 
WWTPs in the United States. Fifty percent 
of total wastewater samples were positive for 
MRSA, and 55% of total samples were posi-
tive for MSSA. Yet, the odds of samples being 
MRSA-positive decreased as treatment pro-
gressed. For example, 10 of 12 (83%) influent 
samples were MRSA-positive, but only 1 of 
12 (8%) effluent samples was MRSA-positive 
(Table 1). Based on these findings, wastewater 
treatment seems to reduce the number of 
MRSA and MSSA isolates released in effluent. 
However, the few isolates that do survive in 
effluent might be more likely to be MDR and 
virulent isolates.

Previous studies conducted in Sweden 
have also reported a decline in MRSA as 
wastewater treatment progressed. Specifically, 
Börjesson et al. (2009) showed that the con-
centration of MRSA as measured by real-time 
PCR assays decreased as treatment progressed 
from approximately 6 × 103 to 5 × 102 mecA 
genes per 100 mL from inlet to outlet, except 

for a peak in activated sludge reactor samples 
of 5 × 105 mecA genes per 100 mL (Börjesson 
et al. 2009). On the basis of these findings, 
we might also expect to see an overall decrease 
in MRSA concentrations throughout the 
wastewater treatment process in the United 
States, except for perhaps a peak in activated 
sludge. It is also interesting that at Midwest 
WWTP2, the only WWTP in the study 
that did not employ an activated sludge step, 
MRSA was detected only in the influent. The 
lack of MRSA detected beyond influent at 
Midwest WWTP2 could be due to the effec-
tiveness of an anaerobic step in the sequenc-
ing batch reactor (Figure 1) (Minnigh H, 
personal communication).

Cycling of MRSA between humans and the 
environment. Our findings also provide evi-
dence that municipal wastewater could serve as 
a medium for the cycling of CA-MRSA strains 
between humans and the environment. MRSA 
has been found at concentrations between 104 
and 108 colony-forming units (CFU)/g of fecal 
material (Wada et al. 2010). PVL-positive 
strains, SCCmec type IV, and USA 300, all 
of which characterize the majority of the 
MRSA isolated from wastewater in the present 
study, have traditionally been associated with 
CA-MRSA (Gorwitz et al. 2008; Seybold et al. 
2006). The high prevalence of PVL-positive 
CA-MRSA in the U.S. population compared 
with those in other countries could explain the 
high percentage of PVL-positive MRSA isolates 
in wastewater in the present study (Seybold 
et al. 2006; Tristan et al. 2007). The associa-
tion of PVL-positive MRSA and CA-MRSA 

with skin and soft tissue infections could also 
explain the occurrence of PVL-positive MRSA 
isolates in wastewater samples in the pres-
ent study, because MRSA could be shed in 
showers at concentrations of approximately 
1.4 × 104–1.0 × 105 CFU/person (Lina et al. 
1999; Plano et al. 2011). The large cluster of 
MRSA isolates we recovered that were PVL-
positive and showed similarity to USA 300 
is concerning because both USA 300 strains 
—which are typically resistant to erythromycin 
and β-lactam antibiotics—and the pvl gene 
are associated with increased virulence, severe 
bloodstream infections, and necrotizing pneu-
monia (Gorwitz et al. 2008; Lina et al. 1999; 
McDougal et al. 2003).

Moreover, the abundance of SCCmec 
type IV among the recovered MRSA isolates 
could indicate superior survival characteris
tics, namely the lower energy cost of SCCmec 
type  IV carriage (Börjesson et  al. 2010). 
SCCmec type IV strains that we recovered 
appeared to persist longer in the waste
water treatment process than type II strains. 
However, this phenomenon warrants further 
investigation because our results are based on 
only one WWTP (Mid-Atlantic WWTP1), 
and a previous study found that SCCmec types 
were not significantly associated with MRSA 
survival (Levin-Edens et al. 2011).

Four isolates that did not have the mecA 
band in SCCmec typing but were found to 
be OXA+ resistant through antimicrobial sus-
ceptibility testing could have the novel mecA 
homolog, MRSA-LGA 251, as identified by 
García-Álvarez et  al. (2011). Interestingly, 

Table 4. Number (%) of MRSA isolates recovered from wastewater by SCCmec type and by possession of 
the pvl gene. 

Sampling location 

SCCmec typea

PVL-positivebType II Type IV No mecA
Mid-Atlantic WWTP1 (n = 100)

Influent (n = 40) 0 (0) 40 (100) 0 (0) 28 (70)
Activated sludge reactor (n = 40) 13 (33) 27 (68) 0 (0) 25 (63)
Secondary clarifier (n = 20) 0 (0) 19 (95) 1 (5) 18 (95)
Effluent (n = 0) 0 (0) 0 (0) 0 (0) 0 (0)
Total (n = 100) 13 (13) 86 (86) 1 (1) 71 (72)

Mid-Atlantic WWTP2 (n = 47)
Influent (n = 20) 0 (0) 20 (100) 0 (0) 9 (45)
Activated sludge reactor (n = 27) 0 (0) 27 (100) 0 (0) 26 (96)
Secondary clarifier (n = 0) 0 (0) 0 (0) 0 (0) 0 (0)
Effluent (n = 0) 0 (0) 0 (0) 0 (0) 0 (0)
Total (n = 47) 0 (0) 47 (100) 0 (0) 35 (75)

Midwest WWTP1 (n = 69)     
Influent (n = 22) 0 (0) 19 (86) 3 (14) 9 (47)
Post aeration (n = 21) 0 (0) 21 (100) 0 (0) 20 (95)
Secondary clarifier (n = 13) 0 (0) 13 (100) 0 (0) 13 (100)
Effluent (n = 13) 0 (0) 13 (100) 0 (0) 13 (100)
Total (n = 69) 0 (0) 66 (96) 3 (4) 55 (83)

Midwest WWTP2 (n = 24)     
Influent (n = 24 ) 24 (100) 0 (0) 0 (0) 0 (0)
Cell B (n = 0) 0 (0) 0 (0) 0 (0) 0 (0)
Effluent (n = 0) 0 (0) 0 (0) 0 (0) 0 (0)
Total (n = 24) 24 (100) 0 (0) 0 (0) 0 (0)

aSCCmec types I, III, V, and VI were not identified in any sample. bPVL PCR was performed only on isolates with the 
mecA gene. 
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Figure 4. Percentage of multidrug-resistant (resis-
tant to two or more classes of antibiotics) MRSA 
and MSSA isolates from all WWTPs, by wastewater 
treatment step.
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three of these four isolates were from Midwest 
WWTP1, which is surrounded by animal pro-
duction facilities. García-Álvarez et al. (2011) 
detected the novel mecA homolog in bovine 
MRSA, although the original source of MRSA-
LGA 251 is still under investigation (García-
Álvarez et al. 2011). Because traditional mecA 
primers do not detect this homolog (García-
Álvarez et al. 2011), there could be an even 
greater number of wastewater samples contain-
ing MRSA than were detected in the present 
study. However, it was beyond the scope of the 
present study to further assess the wastewater 
samples for the presence of MRSA-LGA 251.

Public health implications. Our find-
ings raise potential public health concerns for 
WWTP workers and individuals exposed to 
reclaimed wastewater. WWTP workers could 
potentially be exposed to MRSA and MSSA 
through several exposure pathways, including 
dermal and inhalation exposures. However, 
few studies have evaluated microbial exposures 
among WWTP workers. Mulloy (2001) sum-
marized findings of exposures to Leptospira, 
hepatitis A, and bacterial enterotoxins and 
endotoxins among WWTP workers (Mulloy 
2001). Yet, to our knowledge, no studies have 
evaluated MRSA or MSSA carriage rates among 
these populations. Encouraging frequent hand
washing and the use of gloves among WWTP 
workers could reduce the potential risks associ-
ated with possible MRSA exposures.

Other individuals who are exposed to 
reclaimed secondary wastewater, including 
spray irrigators and people living near spray 
irrigation sites, could be potentially exposed 
to MRSA and MSSA. No federal regula-
tions exist for wastewater reuse from either 
secondary or tertiary facilities, although the 
U.S. Environmental Protection Agency (EPA) 
has issued water reuse guidelines (U.S. EPA 
2004). States determine whether to develop 
regulations or guidelines to oversee the use of 
reclaimed wastewater within their boundaries, 
and most state guidelines allow secondary efflu-
ent to be used for certain reuse applications, 
including spray irrigation of golf courses, public 
parks, and agricultural areas (U.S. EPA 2004). 
In the present study, we detected MRSA and 
MSSA in unchlorinated effluent from Midwest 
WWTP1, a WWTP with only seasonal chlori-
nation (it could be defined as a secondary treat-
ment plant during periods when chlorine is 
not applied). Our findings suggest that imple-
menting tertiary treatments for wastewater that 
is intended for reuse applications could reduce 
the potential risk of MRSA exposures among 
individuals who are working on or living by 
properties sprayed with reclaimed wastewater.

Limitations. There are some notable limita-
tions of this study. First, the number and tim-
ing of sampling events and samples collected 
at each WWTP was not the same because of 
access issues at some of the plants. Second, 

enrichment of the samples preempted our 
ability to report concentrations of MRSA and 
MSSA in wastewater. Finally, because PFGE 
was performed on a representative subset of 
all MRSA isolates, the true heterogeneity of 
the MRSA isolates contained in the wastewater 
samples may have been underestimated. On the 
other hand, MRSA strains have evolved from 
a small number of clonal strains, so the likeli-
hood of isolating MRSA with phenotypic and 
genetic similarities during our isolation proce-
dure was high (Enright et al. 2002; Fang and 
Hedin 2003; Oliveira et al. 2002). However, 
the goal of the present study was to evaluate 
the occurrence of MRSA at WWTPs in the 
United States and, even if clones were selected, 
the findings concerning the presence and types 
of MRSA at the four WWTPs are still accurate.

Conclusions
To our knowledge, our study is the first to 
demonstrate the occurrence of MRSA in U.S. 
municipal wastewater. Although tertiary waste
water treatment may effectively reduce MRSA 
in wastewater, secondary-treated wastewater 
(unchlorinated) could be a potential source 
of exposure to these bacteria in occupational 
settings and reuse applications. Because of 
increasing use of reclaimed wastewater, further 
study is needed to evaluate the potential risk 
of antibiotic-resistant bacterial infections from 
exposure to treated wastewater. 
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